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OPTIMAL DESIGN OF ELASTIC STRUCTURES
FOR MAXIMUM STIFFNESSt

N. C. HuanGi

University of California, San Diego. La Jolla. California

Abstract—The purpose of this paper is to establish a general theory of optimal design of elastic structures such
that the structure with a given volume would have maximum stiffness. A sufficient condition of optimality is
derived from the principle of minimum potential energy. This optimality condition is proven by the variational
method to be a necessary one under the condition that the optimal structure has certain continuity and
differentiability properties. Physical interpretations of the optimality condition are discussed for problems of
beams. plates and trusses. An application of the theory is illustrated in a problem of optimal design of a simply
supported circular plate under uniform pressure. Detailed description of the numerical procedure for the solution
of the plate problem is presented.

1. INTRODUCTION

IN the problem of optimal elastic design of structures for maximum stiffness.§ we usually
define a design variable and ask how the design variable should vary as a function of
position such that the work done by a given load to the structure is maximized while the
total weight of the structure remains constant. The choice of the design variable depends
entirely on the design purpose. For example. in the: problem of optimal design of sohd
beams. we may choose the height of the beam as a design variable and keep the width of
the beam fixed or vice versa. In the problems of optimal design of plates we would consider
the thickness of the plate as a design variable. Equivalent problems of optimal design are:
(1) for given deformation and load, find the variation of the design variable such that the
total weight of a structure is a minimum ; and (i), for given deformation and total weight
of a structure, find the variation of the design variable such that the applied load is a
maximum.

A general method of treating a variety of problems of optimal design of sandwich
structures was given by Prager and Taylor [1]. The problems of optimal elastic design of
solid beams to achieve the highest fundamental frequency and of solid columns to reach
the largest buckling load or maximum height have been analyzed by the variational
method m [24].

In this paper. we shall deal with the optimal design of elastic structures for maximum
stiffness in a general manner. A necessary and sufficient condition of optimality is derived
by means of the calculus of variation and the principle of minimum potential energy. The
physical meanings of this optimality condition in the problems of beams, plates and trusses
are discussed. An application of the theory is made for the problem of optimal design of a
circular plate with simply supported edge under a uniform pressure.

t The results presented in this paper were obtained in the course of research conducted under Contract
N00014-67-A-0109-0003, Task NR 064-496 with the Office of Naval Research, Washington. D.C.

+ Assistant Professor, Department of Aerospace and Mechanical Engineering Sciences.

§ The term “'stiffness” used in this paper is measured by the external work done by the load.
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2. BASIC PRINCIPLE

Consider an elastic structure which may be a beam, a plate. a shell or a truss. Let P, and
¢, be the generalized load and the generalized displacement at any point. The external
work is
Y Po; = | LdS i

v

W=

raf—

where dS denotes the line element of a one-dimensional structure or the area element of a
two-dimensional structure and U is the unit strain energy. The potential energy 1s defined as

= [‘L'dS—ZPio',-‘ (2)

Therefore
= -w (3

Let s be the stiffness and ¢ the specific strain energy or the strain energy per unit stiffness.
we have

U = se 4

Denote the design variable by B = B(S) which is a function of position. For an appropriate
choice of the design variable, the total volume of the structure can be written as

l"=¢ | BdS )]
v
where ¢ 1s a positive constant. The stiffness can usually be expressed as

sy = xB" i6)

where x is a positive constant and n stands for any positive integer. For example. in the
problem of optimal design of a beam of rectangular cross section with fixed width b and
variable height for maximum bending stiffness. we may take the cross-sectional area of
the beam as the design variable. We then have ¢ = [.n = 3and x = E.(12b>), where E is
Young's modulus for the beam material.

In general. we have from equations (2). (3). {4) and (6).

M= -W=2z |eB"dS— Y PJ. {7

o

For given load, we can consider W as a measure of stiffness.
Let us consider two designs specified by BiS) and B(S). Suppose that these two designs
would lead to the same stiffness. i.c..

xJ ¢B"dS— Y Po, = u | eB"dS— ¥ PJ, (%)

where € and 9, are respectively the specific strain energy and generalized displacement
corresponding to the design B. By the principle of minimum potential energy, we have

x| eBrds— Y P, < x | B dS— Y Py, i
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because the displacements of the design B are also kinematically admissible for the design
B. From equation (8) and the inequality (9). we have

[e(f?"—B")dS = 0. (10)

Y

If B is infintesimally close to B, we may set
B = B+6B (11)

with 3B to be a function of position of infinitesimal magnitude. If we substitute equation
{11) into the inequality (10) and neglect the higher order terms of B we obtain

feB"'”’éBdS = 0. (12)
If
eB"" ! = constant (13)

then [6B dS > 0 and the design specified by B is an optimal one in the sense that it does
not have a greater structural weight than any neighboring design of the same stifiness.
Thus equation (13) is a sufficient condition for optimality in this restricted sense. Equation
(13) can also be written as

U/B = constant. (14)

We shall prove that the optimality condition, equation (13). is also a necessary condition
of optimal design. For given V, the problem of optimal design for maximum stiffness can
be reduced to find B(S) such that the external work W given by equation (1) is maximized
under the subsidiary condition of equation (5). If the design variable is continuous and
differentiable, this problem can be treated by the calculus of variation. We can set the
following variational equation from equations (1), (4), (5} and (6):

5J(eB"—AcB)dS = 0, (15)

where / is a Lagrange multiplier. The Euler equation of equation (15) would lead to the
optimality condition equation (13). Thus equation (13) is also a necessary condition of
optimal design.

By the condition of optimality and the equation of equilibrium, we can find a solution
for our problem corresponding to a local minimum weight of the structure if this solution
exists. Whether this local minimum s also the absolute minimum depends on the uniqueness
of the solution.

In the problems of optimal design of beams, it is evident from equation (14) that a beam
design is optimal in the sense specified above if the given loads produce deflections such
that the strain energy in any element between adjacent cross sections is proportional to
the weight of this element. Equation (14) can also be written as

M?/(14) = constant (16)

where M is the bending moment and A and I are the area and the moment of inertia of the
cross section respectively. We can also write equation (16) as

Mh/(I AR = constant. (17)
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where h is the height of beams of rectangular cross section or the radius of beams of circular
cross section. Since [ is proportional to 4k, we have

Mh/l = constant. (13

Accordingly, the optimal design of beams of rectangular or circular cross section is also
the design of uniform strength in which the stresses in the extreme fibres are uniform. By
using this property of uniform strength, we can simplify our analysis of optimal design of
beams, particularly when the problem is statically determinate.

In the problem of optimal design of plates under bending and without stretching, if the
thickness of the plate h is taken as the design variable, equation (14} becomes

(M:+M:-2vM M, + 21 +vM2]/h* = constant (19)

where M and M, are bending moments. M is the twisting moment and v is the Poisson’s
ratio of the material. Equation (19) can also be written as

0i+0;—2vo.6, + 21 + )15, = constant {20

where o, ¢, and 1, are stress components on the surfaces of the plate. An alternative
expression of equation (20} 1s

T &+ 0.8, + T, 7y, = COnstant 121y
where ¢, , ¢, and 7, are strain components on the surfaces of the plate. Therefore the optimal
design of plates under bending and without stretching is the design of constant strain
energy density on the surfaces of the plate. This condition of constant strain energy density
on the surfaces is of course also applicable to the beam problems.

We can also prove by the same method as shown in the beam and plate problems that
the optimum truss of given configuration and volume for maximum stiffness is the one in
which the stresses per unit area in all members have the same magnitude. In other words,

the optimal design of trusses is also the design of uniform strength.

3. OPTIMAL DESIGN OF CIRCULAR PLATES WITH SIMPLY
SUPPORTED EDGE UNDER UNIFORM PRESSURE

As an illustrative example of the theory developed in the previous section. let us
consider the problem of optimal design of an elastic circular plate of radius ¢ under a
uniform pressure ¢ for maximum stiffness. Again. we shall measure the stiffness of the
plate by the external work of pressure g. Set the origin of a polar coordinates system at the
center of the plate. We shall assume that the optimum plate is axisymmetric. i.e., the thick-
ness h and deflection w of the plate are functions of radial coordinate r only. The curvatures
of the deformed plate are

%, = —w (22)

and

[
(9%
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where ( ) = d/dr{ ). The moment—curvature relations are

M, = Dix, +vxg) = —D(w"+£w') (24)
r
and
I
Mg = Dixg+vu,) = — D(~\1"+ 1'\«"’) (25)
r
where
_ En? 56
TR 2
The equation of equilibrium is
M M
—+M,-—4+Q=0 27
¥ r
where
Q=gqgr2 (28)

is the transverse shear. Substitution of equations (24}. (25) and (28) into equation (27)
leads to

D(V’Zn')’-%D’(w”-f-;w') = Igr (29)
where V? = (d?/dr®)+(1,/r)(d/dr) is the Laplace operator. Equation (29) can be written as

1 2 2 2 (1 r ' '
201113—(V‘w)‘+6ah’h; w +‘—w =g (30}
r r

where x = E(1—1v?)7 112, If we choose the thickness of the plate & as the design variable.
the condition of optimality. equation (14). becomes

2 2.2 1 . ‘
Uih = %och'[(V‘w)‘——Z(l — V- w’} =C (31)
r

where C is a constant.
Let w be the average deflection of the plate. We have

2 a
W = —;f wr dr. (32)
a*Jo
From equation (1). we have

W=

Vol

ngwa? = an Urdr = Ean hrdr = CV. (33)
4] 0
After elimination of C from equations (31) and (33). we obtain

. :
2avh2[(V2w)l—2(l - v);w'w”] S (wa*) =g (34)
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where
l' i
r= = hrdr (339
—n » ()
The edge of the piate is assumed to be simply supported. We have the following
boundary conditions :

w0y = 0. i36)

wid) = 0. (37)
and

M {a) = 0. (38}

Substituting equation {24) into equation (38) and using equation (34). we have

LoV S 1, wi=] ¢
Wi —w (W + ve—ww | — =0 at r =u i 39)
r r r
Since wia} 1s bounded.
wia) = «. 1))
From equations (241 138) and (40), we have
Ata) = 0, 40

Let us introduce the following dimensionless quanti les

X o= rd. vo=2awilga'® and ¢ = athor (42

and put

|
|
j+52
=]
o
<}
[ 9]
I
]
|
4
i

()=

Equations (35). {301 (34). 132), 1361, (37), (40) and (41) can be expressed in terms of these
dimensioniess quantities :

s 1

J txdx = [, 1431
0

i
-
=

| 1 v
Vi) + 37 —(_v”+a\"
X \" X

f
=
I

S P Lo
('({V‘_\‘)“ =2l —v)-v \J
N

L
-1
v=2 ‘ rxdx, 46}
v
V(0Yy =0, (47
¥y = 0. (4%)

Vily = ¥ (49,
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and
(1) =0. (50)

Let § = 1" be the deflection slope. Equations (44). (45). (47). and (49) can be written in
terms of ¢ as

1 1 & S U
r3—(H"-:—~0’——,) +3r~r’~(0 +‘~9) = 1. (51)

RY AY .\"/ X X

i 304 l v 1 S 1 * - -

P +2v-08+—=8° | = Zf .\-f 8(J)ds dx. (52)

x X< 0 1
60y =0 (53)

and

(1) = oc. (54)

Equations (43) and (50)+(54) are the governing equations of our problem. Since the non-
linearity is involved in the coupled differential equations, we shall solve them by an iterative
procedure. First of all, we shall assume values for 6(x). then solve for t(x) from equation
(51) and adjust 6(x) such that equation (43) is satisfied. Next. 8(x} can be solved from
equations (52), (53) and (54) and t(x) is solved from equations (43) and (51) again. Such
iteration will continue until certain convergence criterion is fulfilled. The process involved
in this iterative procedure will be described in detail in the following.

From equation (54) we can see that close to the edge of the plate there is a region in
which 8" > 6’ > 8 and equations (51) and (52) can be expressed approximately as

1
t319"+3t21'-—9' =1 (55)
X x
and
1 X
267 = 2 f X f B2 dz dx = 4ct (56)
o] 1
where ¢, is a constant. Equations (55).(56) and (50) can be solved explicitly. The solutions are
6 = —4cisin” Ix+c¢, (57)
and
I = : (1—-x%)p (58)
T 2¢ )

where ¢, is an integration constant. Let 1—x* be the thickness of the boundary layer
region in which the approximate equations (55) and (56) hold. The values of ¢, and ¢, are
determined by matching the values of 8 and € at x = x*, viz.
—dci = ()1 —x*)t (59)
and
¢y = O(x*)+4c3 sin ™ x*, (60)
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Let v = x; = (i — A, where A is the mesh size. Set ¢, = tix,) and 1, = ftx). In the
region A < x*. we shall use the following central difference equations to approximate the
derivatives of 0(x):

{)::ﬁ”r—l_“i—l\’ 161y
and
| 5
8 = (U, =20,+H L 162)
PE
Put
R .
OIX) = )+ ) — =4 163)
X ¥ N
and
‘ 300w i
Uix) = —[t = #}. {64}
N A
Equation (31} can be written as
-~J*H-—@H) (63)
Wt ’
We shall use the open Adams method
A
o= fog =300 166)

to calculate 1; in the first iteration and use the modified Euler’s method

L= [l'l—&—{

(F+1. ) 167)

to evaluate ¢, in the rest of the iterations. The values of the calculated r(x) depend on the
values of A(x) used in equations (61-64). The values of t(x) thus calculated may not satisty
equation (43). Let

.

(vdx = 105
< 1)
Then the adjusted values of rix) and 0(x) would be
TAX) = f{xbu 169)
and

HAN) = 20, {70

Note that such adjustiments would cause ¢t vi and 0,(x) to satisfy equations {43y and (511
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After t(x) is determined we shall solve for 6(x) from equations (52), (53} and (54). Let us
define 8(x) such that it satisfies the following equations:

2 9’%2@904#92 =1 (71)
X X~
6(0) = 0 (72)
and
(1) = o. (73)
For given #(x) we shall solve for 0(x). Let
Blx) = x*t2, (74)
Equation (71) can be written as
X307 +2vx80' + 67 = p. (75)
Therefore
B A ] (76)
Since
}g%? = 6(0). (77)
from equation (71). we have
2A1+w)[HOF(0]? = 1 (78)
or
010y = —[2(1+v)]” 3[e0)) . (79)

If we consider equation (79) as a limiting case of equation (78). we have

g = ——%,‘v@—i—[[f—(l—vﬂéﬂﬂ, (80)

Let 8, = B(x,). we have
b =0 (81)
0y = —[2A1+v) 4L (82)

At the beginning, we shall try

G, = —A[2(1+v)] 4] (83)

then evaluate @, from equation (80) and 6, by iterations according to the following
quadrature formula:

(0, +65). (84)
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After 8, and #, are evaluated. we shall calculate #(i > 2) in the region x < x* according

to the following procedure:
(i1 To use the open Adams method for the first iteration. i.e..

(36, =0, ).

b, =0+

Vo [

(i) To use the modified Euler’s method for the rest of the iterations. i.¢.,
(861

iy =0+ S0+ 0,2

We shall choose x* such that it is a grid point. After 0(x*) is calculated. we shall evaluate
¢, and ¢, according to equations (39) and (60) by replacing #(x*) by d(x*) and #'(x*) by

A'(x*). For x > x*, 0(x) is determined according to equation (57)

Let
'1 ‘,K~
w=2 | x | dOdlde (7]
v i) vl
If we set
Blx) = wbix), (88)
then
~l RES
20 x| AOdldx = w” (R9)
~{) v 1

and #{x) would satisty equations (52). {533) and (54).
This iterative procedure will continue until the following convergence criterion is

1))

fulfilled :
max|[6(x)— 0P(x)], 0P x)| < 027

where 0”(x} 1s the value of fix) appeared in the previous process of iteration. At the

beginning of our calculation. we shall take
)= —sin"'x 191)
as the initial tried value of 6(x).
The numerical values of r(x) and #(x) are shown in Fig. 1 for v = {. The average
deflection of the optimum plate 1s found to be
2 L10 10
_ w*ga a
=29 pser3t (921
1 X

3

For a plate of the same volume and uniform thickness. the average deflection is

11 al()
W = 18_473‘1 3 “)3’

xr
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Therefore the ratio of the stiffness of the optimum plate to that of a plate of the same
volume and uniform thickness 1s

r, = 1.582. (94)

4. DISCUSSION

The proof that the optimality condition. equation (13). is the necessary condition of
optimal design is based on the assumption of continuity and differentiability of the design
variation function. Megarefs [5] has shown in a problem of plastic minimum weight design
or circular solid plate for maximum safety that the volume of the plate can be reduced if
one allows the discontinuity in the variation of plate thickness. In view of the use of
piecewise linear yield conditions with an infinity of compatible strain rates at vertices or
edges of the yield locus, compatibility is less stringent in plasticity than in elasticity. Certain
conditions of continuity and differentiability would be introduced through the compat-
ibility equation mn the elastic problems.

Since the shear deformations are ignored in our analysis of beam and plate problems.
zero cross sections or zero thicknesses are found at the places where the bending moment
vanishes. Shear stress would become infinite at the zero cross section. In order to make the
design more realistic, shear deformations must be taken into account and the stress at
any point must be restricted within the maximum allowable stress. However the analysis
involving the shear deformation and the restriction of lccal stresses would become
complicated.
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AbcTpakT—Llensio nacTosieih paboTsl ABIAETCA BbIBOA OOWEH TEOPHHM ONTHMANBHOIO PACYETA KOHCTPY-
KUMHU TaK, 4TOObl KOHCTPYKUMA C 3adaHbiM 00beMOM 00140414 MAKCHMAIBHOMN KECTKOCTBIO. BhiBoauTCS
AOCTATOYHOE YCIOBHE ONTUMANBHOCTH U3 3AKOHA MMHUMYMA NOTEHUMANBLHOR 34epruu, ITO YCIOBHE
ABAAETCA HEOOXONUMBIM B CMBICJIE BAPHALMOHHOTO METO4A TOrAA. KAK ONTHUMLILHAN KOHCTRYKUMSA
00/1212€T HEKOTOPbLIMM CBHOCTBAMH HEMPEPHUBHOCTH H aubbepeHunaibiocTu. OOCyK1ar0TCa PHIMYECKHE
IHAYEHUA YCJIOBHA ONTUMATBHOCTH 15 3ana4 6aj10k, MIaCTHHOK U depM. [TpuMEHeHHE TCOPUH HATIOCTPU-
pyeTcs 3anaveil ONTHMANIBLHOTO PAc4ETa CBOOOAHO ONePTOM, KPYIIOM [IIACTUHKM 100 NOCTORHHOM J1aBJe-
Huem. Jaetcsa NeTANbHOE OMUCAHHE TEXHMKH PACYETA A5 PELIEHHUS 32AAUM TUTACTHHKK.



